

Лекция по дисциплине «Сети и телекоммуникации»

Internet Protocol (IP) 3 уровень OSI

Руководитель лаборатории сетевых технологий института ИТиАД ИРНИТУ: Аношко Алексей Федорович *Telegram:* @a_anoshko

Необходимость межсетевого обмена

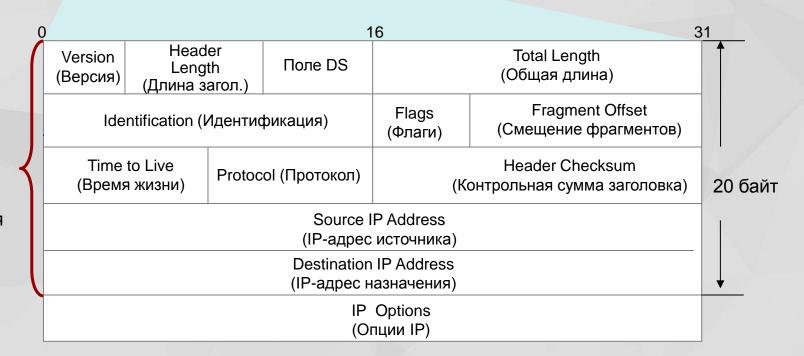
Протоколы второго уровня, такие, как Ethernet - не имеют возможности передавать кадры с данными за границы «домена коллизий».

Реализация логической (IP) адресации позволяет использовать Интернет-протокол другими протоколами для передачи данных в виде пакетов между сетями. Для эффективного проектирования сети необходимы глубокие знания в области IP-адресации, а также полное понимание принципов работы протокола для получения четкого представления о том, как IP-протокол реализуется в качестве протокола маршрутизации.

Структура кадра ІР

Последующий набор команд на выполнение содержится в поле «тип» заголовка кадра.

Ключевой функцией кадра является определение того, был ли достигнут запланированный физический пункт назначения, а также сохранена ли целостность кадра.


Заголовок пакета ІР-протокола

20-60 байт

IP

Данные

Фиксированная часть заголовка сообщения

Сеть	Хост
192.168.1	.1
11000000.10101000.00000001	.00000001

- ІР-адрес идентифицирует сети и сетевые хосты.
- Для IP-адресации используется базовая двоичная система счисления.

IP-адресация

Сетевой адрес

192.168.1	.0
11000000.10101000.00000001	.00000000

Широковещательный адрес

192.168.1	.255
11000000.10101000.00000001	11111111

• Верхние и нижние значения адресов хоста - зарезервированы.

Десятичная, двоичная и шестнадцатеричная системы счисления

Формат	Диапазон значений	Основание
Двоичный	0 — 1	2
Десятичный	0 — 9	10
Шестнадцатеричный	0 — F	16

• Наибольшее распространение в IP-сетях получили двоичная и шестнадцатеричная системы счисления.

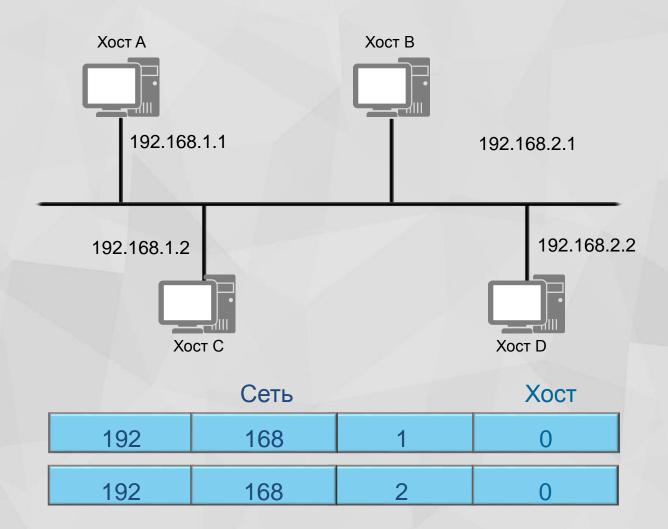
Преобразование из десятичной в двоичную систему счисления

Двоичный символ	1	1	1	1	1	1	1	1
Степень	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20
Число	128	64	32	16	8	4	2	1

Десятичная система	Двоичная система	Шестнадцате- ричная система
0	00000000	00
1	00000001	01
2	00000010	02
3	00000011	03
4	00000100	04
5	00000101	05
6	00000110	06
7	00000111	07
8	00001000	08

Десятичная система	Двоичная система	Шестнадцате- ричная система
9	00001001	09
10	00001010	0A
11	00001011	0B
12	00001100	0C
13	00001101	0D
14	00001110	0E
15	00001111	0F
255	11111111	FF

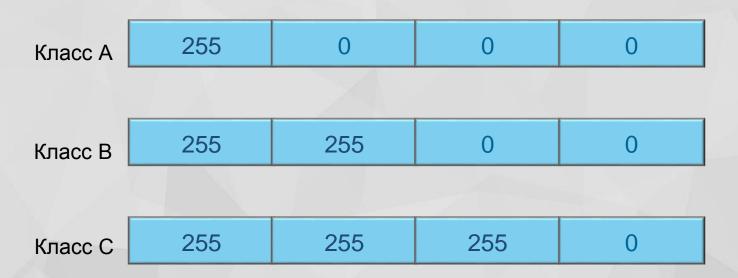
Преобразование из двоичной в десятичную систему счисления


		Сеть		Хост
Двоичная система	11000000	10101000	00000001	00000001
A	2 ⁷ +2 ⁶	2 ⁷ +2 ⁵ +2 ³	2 ⁰	2 ⁰
	//////			
Десятичная система	192	168	1	1

Классы ІР-адресов

	1.0.0.0 ~ 1	26.255.255.255		
Класс А	0 Сеть (8	битов)	Хост (24 б	бита)
	128.1.0.0 ~	~ 191.254.255.255		
Класс D	10 Ce	ть (16 битов)	Хост	(16 битов)
	192.0.1.0 -	~ 223.255.254.255		TALL
Класс С	110	Сеть (24 бита)		Хост (8 битов)
	224.0.0.0 ~	~ 239.255.255.255	$A \cup A$	
Класс D	1110	Многоа	дресная переда	ача
	240.0.0.0 ~	~ 255.255.255.254		
Класс Е	1111	Диапазон для	эксперимента.	пьных сетей

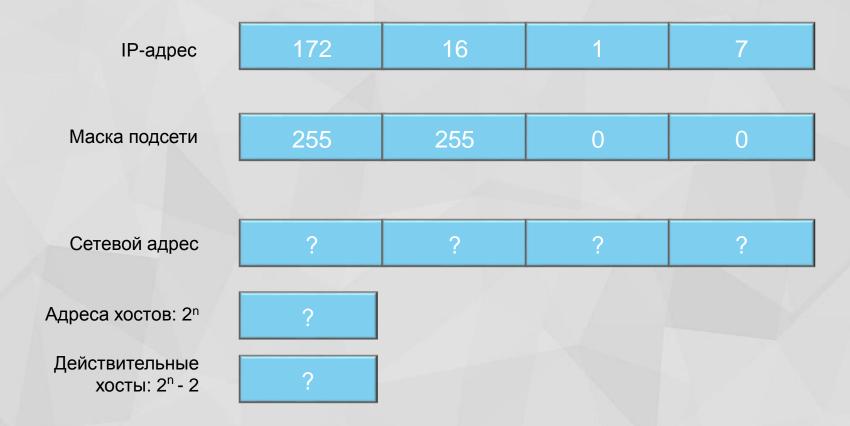
Связь по ІР


Маска подсети

Сеть	Хост
192.168.1	0
11000000.10101000.000000001	00000000
Подсеть	
255.255.255	0
11111111.11111111.11111111	00000000

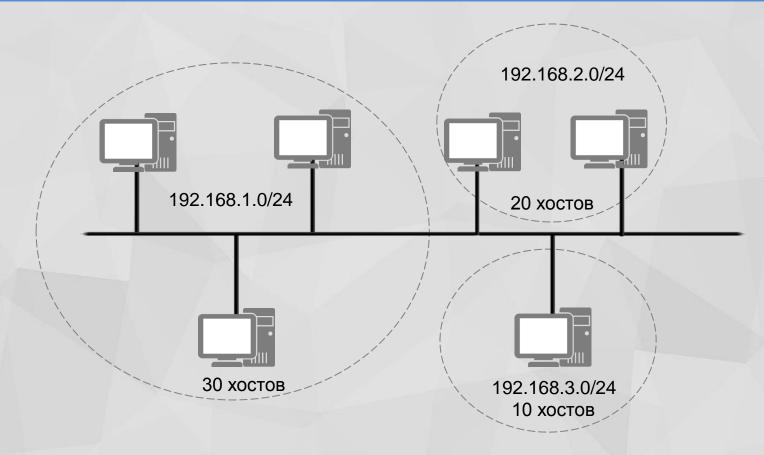
• В маске подсети часть двоичных значений представляет адрес определенной (под)сети, а другая часть — адрес определенного хоста.

Маска подсети по умолчанию

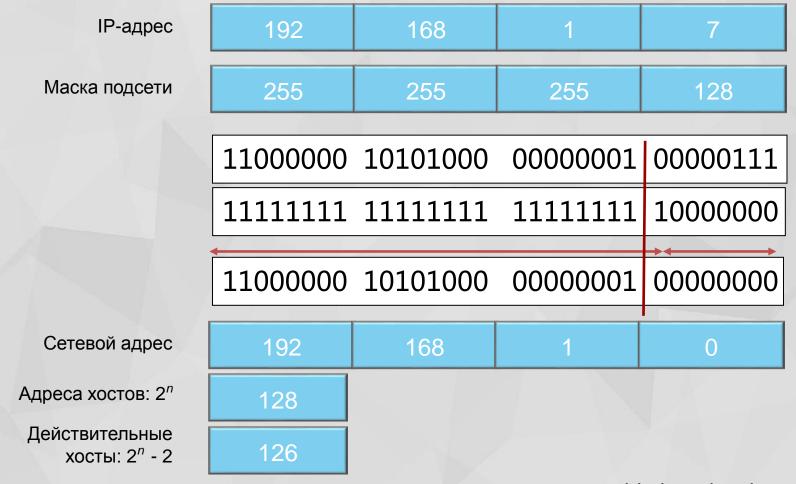

 Некоторые маски подсети применяются в адресных диапазонах по умолчанию и обозначают фиксированный диапазон, который используется в каждом классе сети.

Планирование адресов

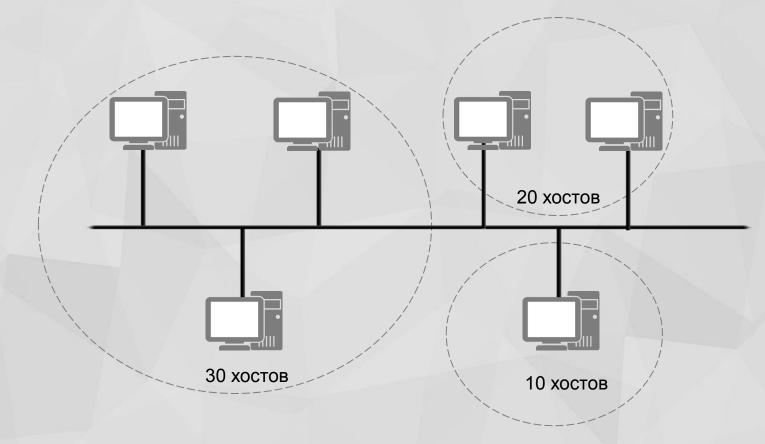
IP-адрес	192	168	1	7
Маска подсети	255	255	255	0
	11000000	10101000	0000001	00000111
	11111111	11111111	11111111	00000000
Ca-a-a-i a-na-				←
Сетевой адрес (двоичный)	11000000	10101000	0000001	00000000
Сетевой адрес	192	168	1	0
Адреса хостов: 2 ⁿ	256			
Действительные хосты: 2 ⁿ - 2	254			



• Определите сеть представленного IP-адреса и количество фактических и действительных адресов хостов в сети.


Ограничения адресов

 Проектирование сети с использованием маски подсети по умолчанию приводит к нерациональному использованию адресов.


Реализация с использованием VLSM

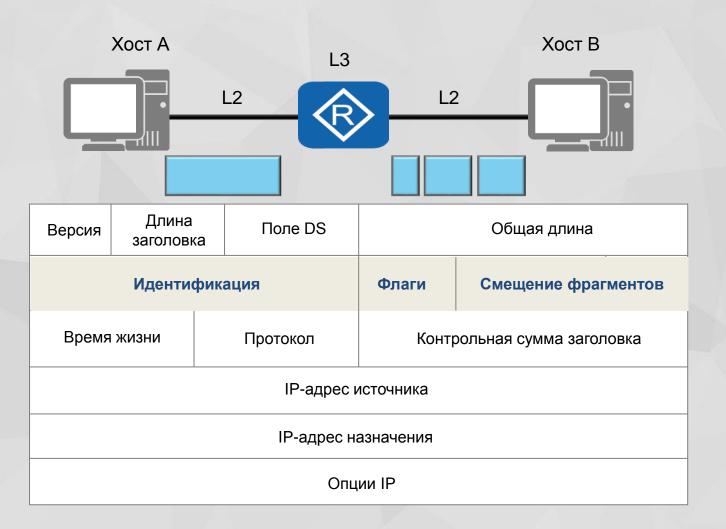
VLSM- variable length subnet mask

Пример использования VLSM

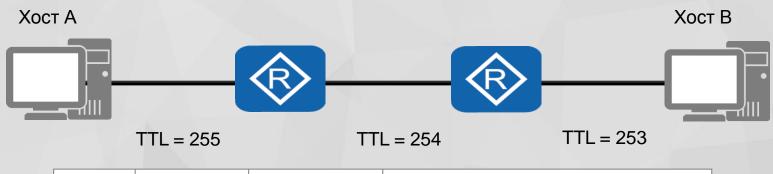
• Используя только сеть 192.168.1.0/24, рассчитайте VLSM для указанного количества хостов в каждом сегменте сети.


Бесклассовая междоменная маршрутизация

Шлюзы IP



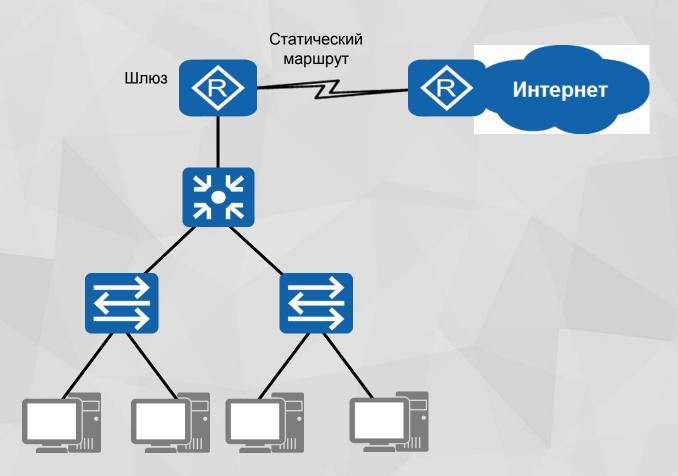
- Шлюзы используют ІР-протокол для передачи пакетов между сетями.
- В локальной вычислительной сети роль шлюзов могут выполнять хосты.


Фрагментация ІР

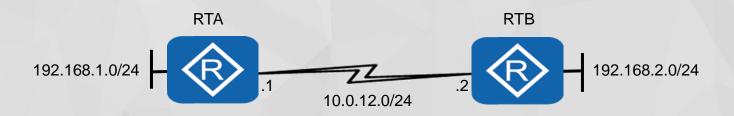
Время жизни (Time To Live)

Версия	Длина заголовка	Поле DS	Общая длина			
Идентификация		Флаги Смещение фрагментов				
Время	инѕиж г	Протокол	Контрольная сумма заголовка		Контрольная сумма заголовка	
IP-адрес источника						
IP-адрес назначения						
Опции IP						

Поле «Протокол

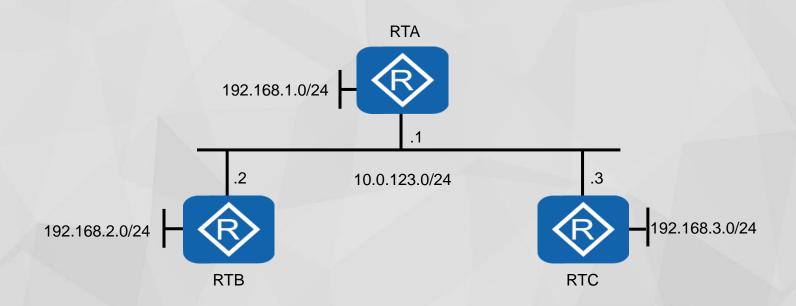


Версия	Версия Длина заголовка		Общая длина	
Идентификация			Флаги	Смещение фрагментов
Время жизни		Протокол	Контрольная сумма заголовка	
ІР-адрес источника				
IP-адрес назначения				
Опции ІР				

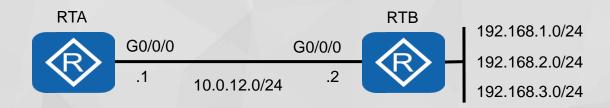

Маршрутизация IP

• Статический маршрут — это инструмент выбора пути к другим сетям.

Поведение статического маршрута



 Передача пакетов через последовательный интерфейс требует определения исходящего интерфейса.


Поведение статического маршрута

Для передачи пакетов через широковещательные сети, например Ethernet, необходимо определить адрес следующего узла.

Статические маршруты по умолчанию

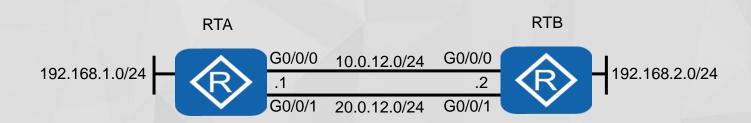
[RTA]ip route-static 0.0.0.0 0.0.0.0 10.0.12.2

 Маршрут по умолчанию является последним доступным ресурсом в том случае, если в таблице маршрутизации не будет найдено других маршрутов с префиксом наибольшей длины.

Проверка статического маршрута по умолчанию

Конфигурирование статического маршрута


```
[RTB]ip route-static 192.168.1.0 255.255.255.0 10.0.12.1 [RTB]ip route-static 192.168.1.0 255.255.255.0 Serial 1/0/0 [RTB]ip route-static 192.168.1.0 24 Serial 1/0/0
```

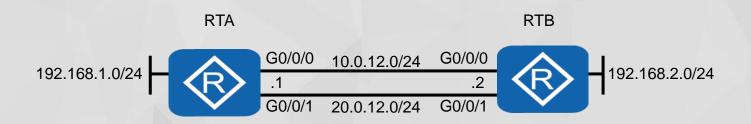

Статический маршрут может быть сконфигурирован

одним из следующих способов.

Балансировка нагрузки статического маршрута


```
[RTB]ip route-static 192.168.1.0 255.255.255.0 10.0.12.1 [RTB]ip route-static 192.168.1.0 255.255.255.0 20.0.12.1
```

• Статические маршруты поддерживают распределение нагрузки трафика для одного пункта назначения и с одинаковой стоимостью маршрутов.



Проверка выполнения балансировки нагрузки статического маршрута

```
[RTB] display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public Destinations: 13
                                              Routes:
14
Destination/Mask Proto Pre Cost Flags NextHop Interface
192.168.1.0/24 Static 60 0 RD 10.0.12.1
GigabitEthernet 0/0/0
                                   Static 60 0 RD
20.0.12.1 GigabitEthernet 0/0/1
```


Плавающие статические маршруты


```
[RTB]ip route-static 192.168.1.0 255.255.255.0 10.0.12.1 [RTB]ip route-static 192.168.1.0 255.255.255.0 20.0.12.1 preference 100
```

• Плавающие статические маршруты обеспечивают альтернативный маршрут в случае отказа основного статического маршрута.

Проверка плавающего статического маршрута

• До отказа основного маршрута в таблице маршрутизации будет указан только основной статический маршрут.

Проверка плавающего статического маршрута

• При отключении основного маршрута в таблицу маршрутизации добавляется плавающий статический маршрут.