

Лекция по дисциплине «Сети и телекоммуникации»

Протоколы:

- Telnet,
- FTP,
- DHCP.

Руководитель лаборатории сетевых технологий института ИТиАД ИРНИТУ: Аношко Алексей Федорович *Telegram:* @a_anoshko

TELNET (TErminal NETwork)

По мере расширения корпоративной сети, в связи с ростом количества филиалов, которые считаются частью корпоративного домена и требуют удаленного администрирования, увеличивается географическое расстояние между используемыми устройствами.

Кроме того, управление сетью часто выполняется из центрального офиса, который контролирует работу всех устройств.

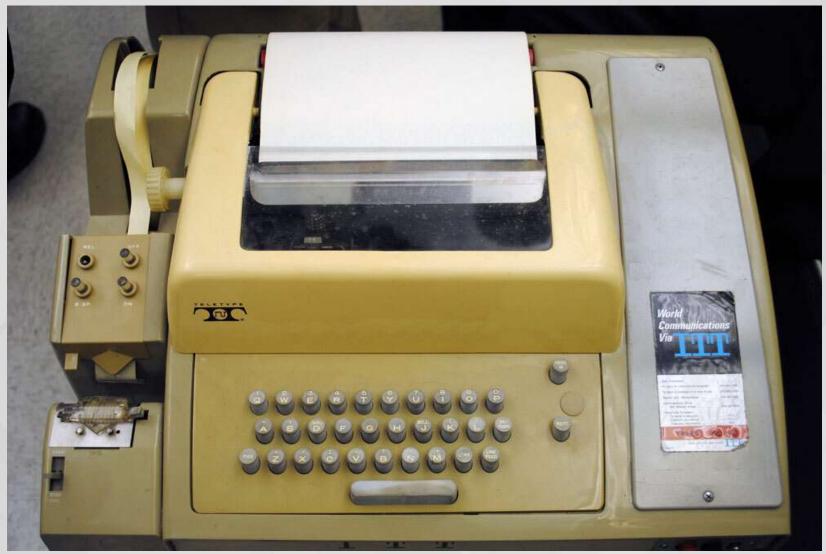
Протокол Telnet позволяет упростить процесс администрирования и управления устройствами. В данной презентации представлены принципы работы протокола и его реализация.

TELNET (TErminal NETwork)

TelNet был разработан в 1969 году.

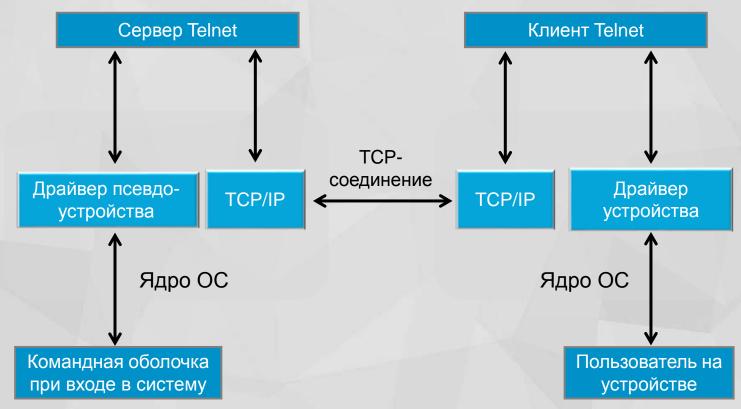
Первой версией была RFC 15, далее расширенная в RFC 854 и далее стандартизированная в один из первых интернет-стандартов IETF STD 8.

Telnet это протокол клиент-сервер. Как правило, он используется, чтобы установить соединение с TCP порт 23, где находится серверное приложение Telnet.


Но ТСР/ІР появился гораздо позже.

Как же происходила передача даных?

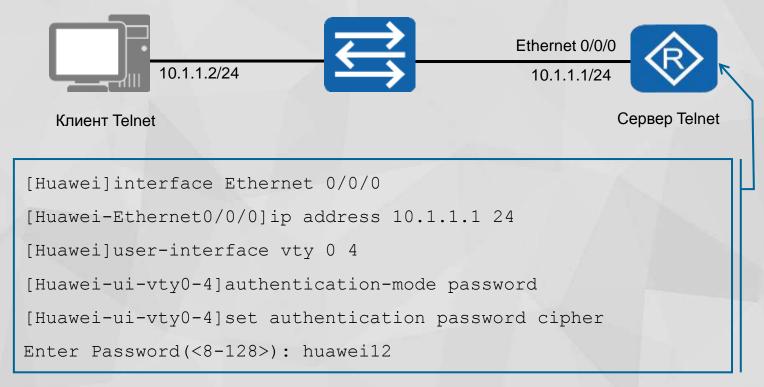
TELNET (TErminal NETwork)


Применение Telnet

Telnet представляет собой программу эмуляции терминалов для двунаправленного обмена текстом при использовании в локальных и удаленных сетях.

Архитектура «клиент-сервер» протокола Telnet

Архитектура Telnet демонстрирует, как нажатие клавиш пользователем интерпретируется драйверами устройств перед передачей по TCP.



Режимы аутентификации

Режим аутентификации	Описание
Без аутентификации	Вход без аутентификации
ААА Аутентификация ААА	
Пароль	Аутентификация по паролю на интерфейсе пользовательского устройства

Конфигурация Telnet

Telnet требует, чтобы до установления соединения к интерфейсу виртуального телетайпа была применена аутентификация.

VTY - VirtualTeletYpe

SSH (Secure Shell — «безопасная оболочка»

Ключевая особенность заключается в том, что SSH шифрует трафик, делая подключения безопасными. По умолчанию, использует 22-й порт.

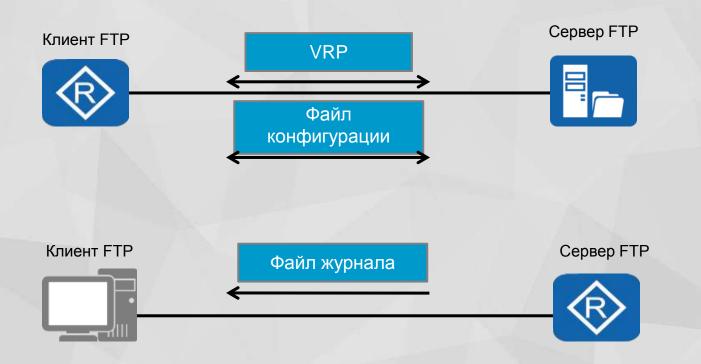
Basic options for your Pu	ITTY session
Specify the destination you want to	o connect to
Host Name (or IP address)	<u>P</u> ort
root@192.168.0.15	22
Connection type:	
○ Raw ○ Telnet ○ Rlogin	SSH ○ Seria

Для аутентификации сервера в SSH используется протокол аутентификации сторон на основе алгоритмов электронно-цифровой подписи RSA или DSA, но допускается также аутентификация при помощи пароля (режим обратной совместимости с Telnet)

RFC 4251

FTP (File Transport Protocol)

На ранних этапах разработки стандартов были заложены основы протокола передачи файлов для реализации обмена файлами между удаленными точками, на который не влияли бы различия в системах хранения файлов между хостами.


Появился в 1971 году и изначально работал в сетях DARPA (департамент передовых исследовательских проектов министерства обороны США).

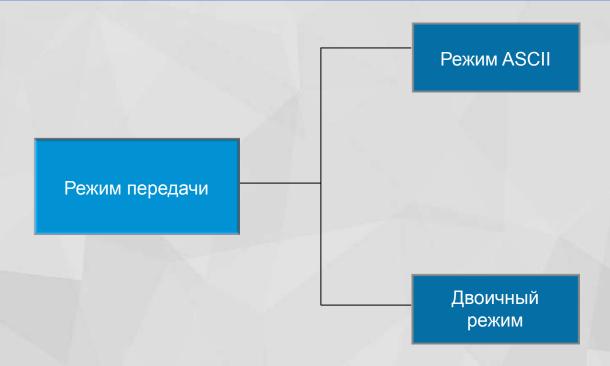
Сервис FTP остается неотъемлемой частью сети как приложение, которое обеспечивает надежную и эффективную передачу данных, обычно реализуемую для резервного копирования и извлечения файлов и данных журналов, а также оптимизирует общее управление сетью предприятия.

RFC: 765, October 1985

Применение FTP в корпоративной сети

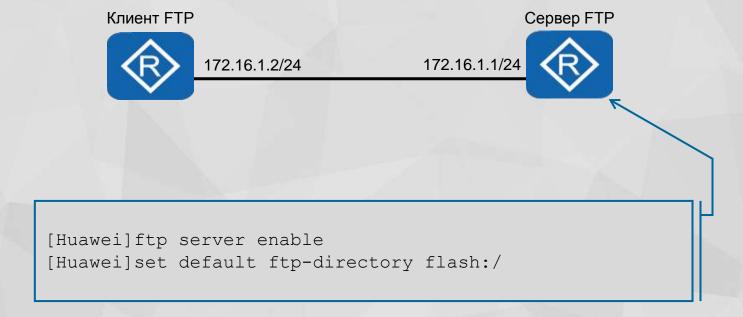
FTP предоставляет эффективные средства для резервного копирования и извлечения важных файлов.

FTP: передача файлов



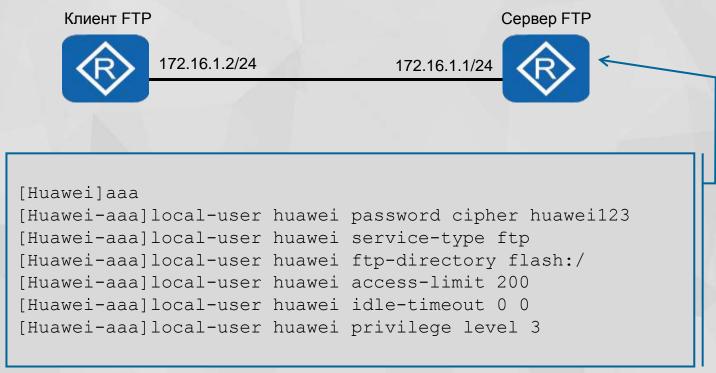
Протокол FTP использует два типа (порта) TCP-соединений.

FTP: основные понятия



Режимы передачи определяют формат данных перед их передачей между отправителем и получателем.

FTP должен использовать два **порта**: **порт** 21 для управления и контроля и **порт** 20 для передачи данных.


FTP: организация работы


Для обработки файлов необходимо включить службу FTP и указать каталог FTP по умолчанию.

FTP: доступ пользователя

Для идентификации пользователей и определения объема прав каждого пользователя поддерживается создание аккаунтов пользователей.

Deprecate and remove support for FTP URLs - 2021-10-13

FTPS: Защищенное соединение по протоколу FTP

FTPS (File Transfer Protocol + SSL) — это защищённый протокол передачи данных. В процессе передачи информации по протоколу FTPS используется криптографический протокол SSL (Secure Sockets Layer)

Существуют два вида соединения FTPS

Explicit FTPS — порт 21. Команды FTP передаются без шифрования. Шифруются только данные.

Implicit FTPS — порт 990. Шифруются команды FTP и данные. (более старая версия протокола.)

SSL - (*Secure Sockets Layer* — уровень защищённых сокетов) — криптографический протокол.

SFTP (Secure FTP)

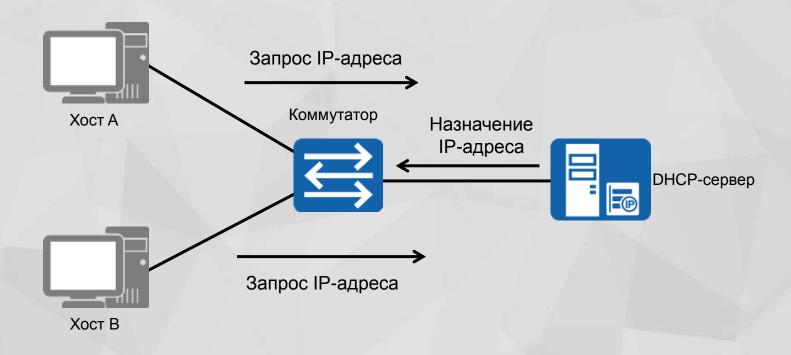
SFTP (Secure FTP, SSH FTP, но не Simple FTP) — расширение протокола SSH. С точки зрения пользователя похож на FTP, однако это совершенно другой протокол, не имеющий с FTP ничего общего.

С точки зрения пользователя SFTP имеет несколько преимуществ перед FTP: Поддержка аутентификации с помощью SSH-ключей, без пароля. Этот способ является более безопасным, так как ваш пароль не хранится на диске компьютера, а также нет необходимости вводить его вручную, что обезопасит вас от программ-кейлогеров, отслеживающих данные, которые вы вводите с клавиатуры.

Поддержка символических ссылок.

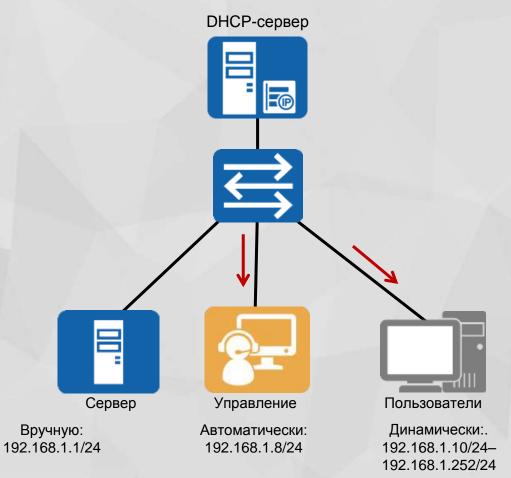
В ряде случаев, когда FTP работает медленно или с перебоями, SFTP-соединение оказывается более быстрым и надежным.

Чтобы соединиться с сервером по SFTP, используйте те же имя сервера, логин и пароль, что и для FTP, но другой порт: 2222.



Принципы работы протокола DHCP

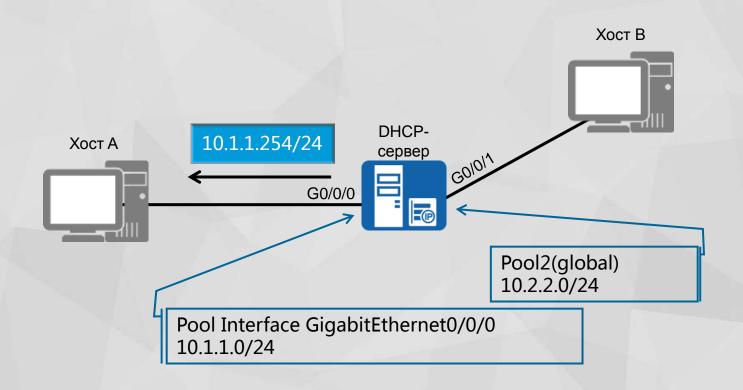
Корпоративная сеть часто может состоять из значительного числа хостустройств, и для каждого такого устройства необходимо настроить сетевые параметры — ІР-адрес и дополнительные данные сети. Ручные операции назначения адреса утомительны и зачастую неточны, что приводит к появлению адресов-дубликатов на конечных станциях или недоступности служб, необходимых для бесперебойной работы сети. DHCP - это протокол прикладного уровня, предназначенный для автоматизации процесса предоставления такой информации о конфигурации клиентам в сети ТСР/IP. Таким образом, DHCP помогает обеспечить правильное распределение адресов и снижает объем административных операций во всех корпоративных сетях. В данном разделе описываются методы применения **DHCP** в корпоративной сети.


Применение DHCP в корпоративной сети

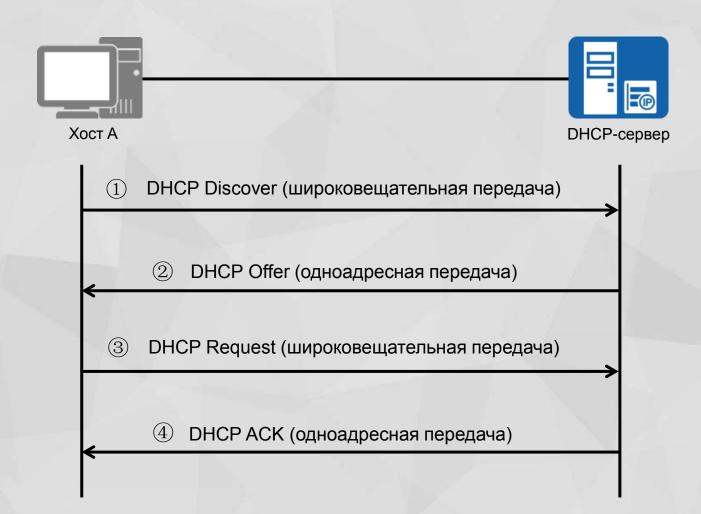
Сети, состоящие из большого числа пользователей, требуют централизованной системы управления, которая будет назначать IP-адреса.

Механизмы назначения адресов

DHCР поддерживает три механизма назначения IP-адресов.

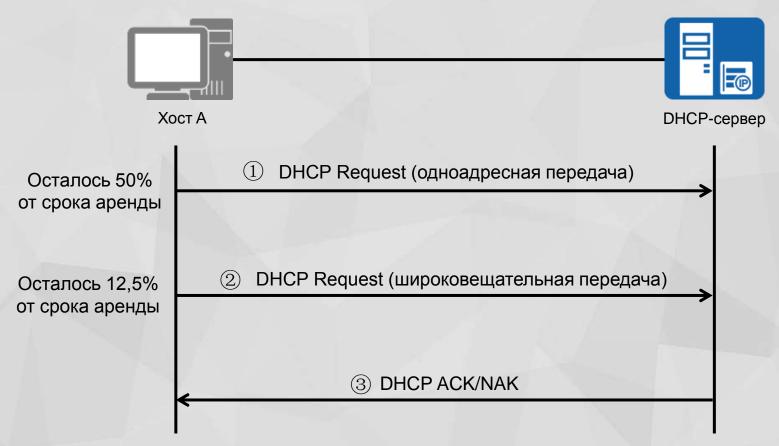

Сообщения DHCP

Тип сообщений	Функция
DHCP DISCOVER	Сообщение посылается DHCP-клиентом в широковещательной рассылке в целях поиска доступных DHCP-серверов.
DHCP OFFER	Данное сообщение посылается сервером в ответ на сообщение DHCPDISCOVER и содержит параметры конфигурации.
DHCP REQUEST	Данное сообщение посылается клиентом серверу с целью а) запроса предлагаемых параметров от одного сервера и отказа от предложений от всех остальных, b) подтверждения правильности ранее назначенного адреса после, например, перезагрузки системы или (c) продления срока аренды определенного сетевого адреса.
DHCP ACK	Подтверждение сервера, отправляемое клиенту с параметрами конфигурации, включая назначенный сетевой адрес.
DHCP NAK	Сервер указывает клиенту, что запрашиваемый клиентом сетевой адрес не может быть назначен.
DHCP RELEASE	Клиент возвращает сетевой адрес серверу и отменяет оставшийся срок аренды.


Адресные пулы

Адресные пулы могут быть либо глобальными, либо интерфейсными.

FTP (File Transport Protocol)


Продление аренды DHCP

DHCP инициирует процесс обновления аренды IP-адресов, когда оставшийся срок аренды составляет 50%.

Истечение срока аренды **DHCP**

Если срок аренды не будет продлен вовремя, то произойдет повторная привязка.

Освобождение ІР-адреса

Если клиент не сможет обновить IP-адрес до истечения срока аренды, IPадрес освобождается.

Конфигурация пула интерфейсов DHCP


```
[Huawei]dhcp enable
[Huawei]interface GigabitEthernet0/0/0
[Huawei-GigabitEthernet0/0/0]dhcp select interface
[Huawei-GigabitEthernet0/0/0]dhcp server dns-list 10.1.1.2
[Huawei-GigabitEthernet0/0/0]dhcp server excluded-ip-address
10.1.1.2
[Huawei-GigabitEthernet0/0/0]dhcp server lease day 3
```

На DHCP-сервере создается адресный пул и настраиваются связанные с ним параметры.

Проверка конфигурации DHCP

```
[Huawei] display ip pool
```

Pool-name : pool2

Pool-No : 0

Position : Local Status : Unlocked

Gateway-0 : 10.2.2.1

Mask : 255.255.255.0

VPN instance : --

IP address Statistic

Total :253

Used :1 Idle :252

Expired :0 Conflict :0 Disable :0

FTP (File Transport Protocol)

